
Residual Learning for Optical Character Recognition
Ryan Friberg

Columbia University, COMS 4995 Midterm Project
March 2nd, 2023

0 GITHUB REPOSITORY
https://https://github.com/ryan-friberg/COMS4995_OCR

1 INTRODUCTION & PROJECT OBJECTIVE
The primary objective of this project was to develop a com-
puter vision pipeline that, given an intake of visual data or
images, will be able to return any text data that may be present
in that data. This task is more widely known as optical char-
acter recognition (OCR). The end result ended up being a
combination of commercial and my own software including
Google Tesseract for text identification and a deep residual neu-
ral network for character classification designed and trained
from scratch. This paper outlines and documents the methods
and procedures by which this pipeline was developed as well
as the challenges faced along the way.

2 METHODS & MODELS
Pipeline Overview
The task of OCR can be broken down in two different sections.
The first subtask is to identify where text in an image is, if
it exists at all. The second is, given this region of the image,
classifying what text is present. With this in mind, there are
two feasible ways to approach OCR. One is to undertake the
process of text detection and classification simultaneously
(such an approach would necessitate the use of an advanced
model such as a Contortionist Temporal Classification (CTC)
model or some equivalent). The other approach is to break up
OCR by subtasks and build models to individually do each
task with a system of passing information between the two
models.

Given the timeline of this project, the second approach
was selected. To further simplify the task, this project utilizes
a commercial method for text identification from Google
called Tesseract. Using this package, the first stage of this
OCR pipeline gives a sequence of single-character bounding
boxes for every character that Tesseract recognizes within
a given image. The second stage is a deep residual neural
network built and trained from the ground up for the purpose
of character identification. The pipeline extracts each of
Tesseract’s bounding boxes as a new image, applies the
necessary image transformations, and then passes it to the
residual network which gives a predicted character label for
each bounding box. All together, the pipeline allows for OCR
from a raw image that had no prior preprocessing.

Model Specifics
The residual network was designed based off of that which
was described in Residual Learning for Image Recognition
[1]. A residual network was specifically chosen so that
the process of designing a new model would be relatively

straightforward with a reasonable number of parameters
(compared to something like a transformer) and that a deeper
model could be achieved. A deeper model is desired as
it would have a higher chance of being able to accurately
encapsulate a classification task with so many labels in its
latent space.

Given an image, it would return a predicted class of
62 possible options (0-9, a-z, and A-Z). In total, it consists
of 107 layers with 12,953,566 trainable parameters. The
architecture was designed as a sequence of residual blocks
that individually function as a shallow convolution network
with a residual tie back to its input. The residual ties allow for
such a deep network to be constructed and trained without
worrying about a vanishing gradient. The design diverged
from the originally cited paper by having a different block
architecture such that each block was both deeper and had
more activation layers. The shapes of the input and output
channels were selected based off of the given batch size (4),
and the size of the images that the model would be given.
After some minor experimentation, a total of seven residual
blocks was chosen as it appeared to adequately encode the
data over the high number of class labels (to be further
discussed later in this paper).

The model was trained with various iterations of hyper
parameters, but ultimately settled with a learning rate of 0.01,
2 data loader workers, batch size of 4, a 3/4 to 1/4 train-test
split in the data, and 10 training epochs (with checkpointing).
Along the way, the model was exclusively trained with cross
entropy loss, but trained with different optimizers including
standard SGD, Adadelta, and Adam to differing performance.

3 DATA
Overview
During development, in hopes of increasing the general-
izability of the model, the choice was made to “increase
the difficulty” of the task by training the residual network
on completely different data than what would be passed
through the pipeline. The residual network was trained on a
conglomeration of single character data from the datasets
within The Chars74k[2] which consisted of several sets
of 128x128 images of individual characters. This dataset
was picked due to its size, roughly 65k usable images, and
its diversity, covering different hand writings, fonts, and
numerous other differentiation’s as well as the evenness in
label distribution across the different classes (ie, there was no
bias towards some characters’ representations within the data
over others). However, this data was not without its faults
and a major one is that every image largely appear flat with a
white background which was potentially a troublesome issue

1

https://https://github.com/ryan-friberg/COMS4995_OCR


for detecting data in real-life situations (such as appearing in
different colors or in different textures, etc). Additionally,
there seemed to be some organizational issues as there were
many instances of incorrectedly-cased (upper or lower case)
letters being present in the wrong class (ex. an image of J in
the folder for j). While the best effort was made to manually
move any that I happened to see, across tens of thousands of
images this was bound to have a negative effect on training as
this is directly confusing the model’s classes.

As mentioned, the model was trained on a different
set than it was “tested” on within the pipeline. The multi-
character data that was passed to the model was derived from
the IIIT 5k dataset [3] which consisted of formatted images
of text with varying colors, resolutions, fonts, etc. Again,
this data was cropped with the help of Google Tesseract and
passed to the residual network.

Within the project, both of these have a custom dataset class
(though one is a simple stripped down approach). Lastly,
section 6 of this paper has an appendix with some examples
of the training data used.

Labels
This data was broken down into 62 different categories, one
for each possible character. For the single-character imageset,
this is a trivial process but that is not the same for images
with many characters. It is infeasible to map labels to words
both due to the sheer volume of English words but also for
the fact that non-words (including just random characters) and
numbers may appear in the image and it would still be valid
for the network to return those characters. To tackle this, one
could reasonably add more advanced aspects to the classifica-
tion task or preprocess the data and go through the Tesseract
outputs and label them by hand. However, given the timeline
of the project, a third option for labels was selected. When
Tesseract gives the character bounding box information of a
character, it conveniently also gives its own prediction for what
that character is. Operating with the assumption that Google’s
commercial software will achieve a higher accuracy than my
humble neural network, I simply extracted these values, with-
held them from the residual network, and used them as the
gold standard for each cropped image. This was ideal because
each image was only given a label for all the text present, but
there was no easy mapping between which characters would
be in which bounding boxes. Additionally, the images in-
cluded more characters than the 62 this project was aiming to
identify (ex punctuation and -technically- spaces) which fur-
ther obfuscated the label design process. While this approach
is not a perfect solution, as Tesseract can also be wrong not
only in terms of label but also the bounding box, it provides a
simple and reasonably strong method for evaluation.

Transformations
A handful of transformations were applied to both datasets
in order to improve the training and accuracy of the
model. Examples include converting images to tensors
and normalizing them to the mean and standard deviation
of ImageNet to reduce outliers. Additionally, all data was
resized to be 3x64x64 as 3x128x128 was needlessly large

and the additional pixels largely did not provide an additional
advantage in classification.

In order to attempt to add variation to the single-character
data, transformations were added to randomly invert the
images, adjust sharpness, and jitter the color in hopes of
preventing the model accidentally associating characters with
strictly black objects on white backgrounds. Similarly, the
multi-character set had a grayscaling transformation applied
to all the data because the color of the text also does not add
any function in its classification.

4 RESULTS
This project was broken down into two different parts and as
such, will have two different sets of results. One for character
classification and one for the OCR pipeline’s accuracy as com-
pared to Google Tesseract. Additionally, there were two sets
of training passes for this project, one with heavy data aug-
mentation (those that were described in the prior section) and
one with only minor transforms applied (which only consisted
of normalizing to the ImageNet statistics).

Character Classification
Because the model has been trained over a set of data with even
representation of every class among the 62 possible options, a
simple accuracy measurement was chosen for the evaluation
metric of the resnet. After training the model over different
parameters, data augmentations, and with different optimizers,
the highest accuracy achieved was roughly 86%. Interestingly
enough, the optimizer did play a relatively significant role in
the performance as training with the Adam optimizer never
allowed the model to come even close to the observed peak
obtained by other optimizers (hovering around a peak of 70%
accuracy). The Adadelta optimizer ended up yielding the
overall peak accuracy.

Figure 1. A graph of the accuracy of the model across three optimizers

2



Figure 1 shows the progress of the model on the highly aug-
mented data throughout it’s training epochs. Here, it is clear
to see how the Adam optimizer lagged behind. Additionally,
the training accuracy essentially monotonically increases with
more epochs but after a certain point the test accuracy because
somewhat volatile suggesting that over-fitting to the training
data has begun.

OCR Results
The OCR section of this pipeline did not have any training.
It was simply the application of two models put together. As
such, the metric used was a simple, single forward pass of the
data through the pipeline and accuracy comparison to Google
Tesseract’s predicted character labels. Using the resnet trained
on the minorly augmented data resulted in a 30% accuracy by
this metric and using the model trained on highly augmented
data surprising yielded an increase in accuracy to about 39%.
It is important to note that this is not a ground truth metric as
Tesseract does not have a 100% accuracy.

5 DISCUSSION & FUTURE STUDY
It is clear that there was a ceiling on the training possibility
of this task as the training runs of the model all seemed to
plateau at some accuracy mark and have issues improving
beyond that. Going into this project, I was unaware of what
accuracy would be achievable both for the individual subtask
of character recognition but also OCR as a whole. At first, the
≈ 39% accuracy for the OCR pipeline compared to Google
Tesseract was a bit of a disappointment but in the context of
the problem, I do think it makes sense. 39% initially seems
rather low, but randomly guessing would only yield a correct
label 1.6% of the time which proves that some generalization
between the datasets has occurred. In my opinion, the two
main issues that enforced this ceiling were the labels and the
data used.

This problem was always going to have difficulty achieving
high accuracy due to the sheer number of labels. 62 labels
is quite a lot, and if there is some ambiguity in the model’s
prediction, there is a much larger chance of its guessing
incorrectly, even if it has confidence in the classification
down to a handful of options. Additionally, there are many
labels that look too visually similar (ex. 0 vs O vs o or W
vs w) which would be easy for a human to mix up. This
problem was only confounded by the data misorganization as
mentioned before. In general, getting high confidence over
every prediction in this task is difficult. To combat this, an
area of future study that would be interesting would be a
weighted loss function such that classifying O as 0 will not
get penalizes as heavily as S vs M for example.

It is my suspicion that the problem was, in fact, the
data that was used. For this project, I was unable to find
a solid-enough single character dataset that was composed
of characters in the real world or in other contexts but
in the future, I think taking more time to conglomerate
and/or crop data from multiple datasets would have made
substantial improvements. This is clear after the added
image augmentation yielded almost a 10% increase in the
pipeline accuracy. I abstained from training the resnet on the

multi-character dataset both because there were far fewer
images (5k vs 65k) with a less even label distribution, and
I wanted to avoid having the model overfit to the testing
data but instead become a generalized character classifier. In
hindsight, this may not have been a bad idea in theory but
I think it would be important to introduce more variations
into the training data that extend beyond what the pytorch
transformations were able to do. If the desired task consisted
of focusing on more neatly documented images, such as
screenshots of pdf text for example, I do believe that this
pipeline would have a far higher OCR accuracy meaning it
was the diversity in the image text data that likely held the
model back. A model is only as powerful as the data it is
trained on and there are always ways to improve.

Reflection
This project as a whole has been a big experimenting session.
Many of these systems were foreign to me prior to beginning
and working with new data and model architectures has given
me a better picture of how everything works (and a much
stronger appreciation for the importance of building datasets!).
While not every decision I made had a strong theoretical rea-
soning backing it up, the fast-paced trial and error has helped
me learn such that if I were to do it again, I believe I could
build upon this experience and do it better.

6 APPENDIX

An example of a training batch passed to the resnet

An example of a multi character image passed to the OCR
pipeline

An example of a multi character image passed to the OCR
pipeline

7 REFERENCES
[1] https://arxiv.org/pdf/1512.03385.pdf

[2] http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/

3

https://arxiv.org/pdf/1512.03385.pdf
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/


[3] https://cvit.iiit.ac.in/research/projects/

cvit-projects/the-iiit-5k-word-dataset

[4] https://static.googleusercontent.com/media/research.

google.com/en//pubs/archive/33418.pdf

[5] https://towardsdatascience.com/

residual-network-implementing-resnet-a7da63c7b278

[6] https://www.run.ai/guides/

deep-learning-for-computer-vision/pytorch-resnet

[7] https://pytorch.org/docs/stable/index.html

[8] https://github.com/tesseract-ocr/tesseract

4

https://cvit.iiit.ac.in/research/projects/cvit-projects/the-iiit-5k-word-dataset
https://cvit.iiit.ac.in/research/projects/cvit-projects/the-iiit-5k-word-dataset
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33418.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33418.pdf
https://towardsdatascience.com/residual-network-implementing-resnet-a7da63c7b278
https://towardsdatascience.com/residual-network-implementing-resnet-a7da63c7b278
https://www.run.ai/guides/deep-learning-for-computer-vision/pytorch-resnet
https://www.run.ai/guides/deep-learning-for-computer-vision/pytorch-resnet
https://pytorch.org/docs/stable/index.html
https://github.com/tesseract-ocr/tesseract

	0 Github Repository
	1 Introduction & Project Objective
	2 Methods & Models
	3 Data
	4 Results
	5 Discussion & Future Study
	Reflection

	6 Appendix
	7 References

