
Contextualized Medication Event Extraction

Ryan Friberg
The University of Chicago, Department of Computer Science

Abstract

This paper gives an overview of a submission
to the Harvard Medicine National NLP Clinical
Challenge. In my implementation of this task,
I experimented with various versions of BERT
including BERT-base, DistilBERT, and a spe-
cialized version of BERT trained on clinical
notes, ClinicalBERT. Additionally, I developed
a pipeline to pre-process the raw medical notes
to feed to my model and employed a handful
of techniques to boost performance including
error analysis through confusion matrices as
well as a weighted loss function to handle the
extremely unbalanced distribution of the raw
data. I document in detail my motivation for
my approach to this challenge, the techniques
I used at each step and my current results on
each of the competition’s sub-tasks.

1 Introduction

This competition has the task of taking raw physi-
cian clinical notes and providing the appropriate
labels regarding the medications used, the past and
future changes in said medications, and the context
in which those changes were discussed. Each team
is given the same set of training data and needs
to create a machine learning model to reproduce
the same specific style of annotations. As such,
the overall challenge can be divided into many dif-
ferent smaller machine learning recognition and
classification tasks. Later sections will provide a
detailed overview of the each contextualized medi-
cal event extraction tasks.

2 Motivation, Related Work, & Points of
Comparison

Mahajan et al. laid the groundwork for contextual-
ized medical event extraction in (Diwakar Mahajan,
2021) in an effort to extract more comprehensive
contextual information about medication changes
discussed in clinical notes. Healthcare providers
currently rely on structured medication orders in

order to query patients’ medication history, but
these official orders do not capture much of the im-
portant information regarding medication change
events that define the complete timeline and con-
text of a patient’s medication history. Often, richer
documentation of medication events can be found
in the clinical notes kept by healthcare providers.
Hence, Mahajan et al. investigate the application of
language models to this problem in order to extract
such information and achieve a better characteriza-
tion of medication events. Mahajan et al. achieve
this by formulating a notion of multi-dimensional
context classification in order to address the limited
scope previous works have employed on similar
tasks.

As paper written by Mahajan et al. was task-
defining and addressed many subtasks of contex-
tual medical event classification, I chose to model
my submission to the clinical challenge based on
their approach. However, since the paper does not
address the application of named entity recognition
(NER) to identify medication mentions in clinical
notes, I simply decided to formulate NER as stan-
dard classification task using BERT and a method
from (Erik F. Tjong Kim Sang, 2000) which I dis-
cuss later on in this paper in section 4.3. One other
major difference between my models (in addition
to my data pre-processing and the other techniques
discussed in section 6), was that for the sequence-
based classification tasks (event and context), I still
used token classification as described in section 4.5.
Mahajan et al. used sequence classification in these
sub-tasks.

One of the most major benefits of (Diwakar Ma-
hajan, 2021) was it providing me with a point of
comparison in terms of model accuracy on the spe-
cific sub-tasks of the challenge. When they uitilized
the ClinicalBert Model with their private configu-
ration, they reported the following results based on
the unreleased test data set:



CMED Event Classification
Micro Precision 0.88
Macro Precision 0.79
Micro Recall 0.88
Macro Recall 0.79
Micro F1 0.88
Macro F1 0.79

Table 1: Mahajan et. al Event classification results

CMED Action Classification
Micro Precision 0.75
Macro Precision 0.75
Micro Recall 0.75
Macro Recall 0.63
Micro F1 0.75
Macro F1 0.65

Table 2: Mahajan et. al Action classification results

CMED Temporality Classification

Micro Precision 0.83
Macro Precision 0.80
Micro Recall 0.83
Macro Recall 0.74
Micro F1 0.83
Macro F1 0.75

Table 3: Mahajan et. al Temporality classification
results

CMED Certainty Classification

Micro Precision 0.90
Macro Precision 0.83
Micro Recall 0.90
Macro Recall 0.76
Micro F1 0.90
Macro F1 0.79

Table 4: Mahajan et. al Certainty classification results

CMED Actor Classification
Micro Precision 0.93
Macro Precision 0.83
Micro Recall 0.93
Macro Recall 0.72
Micro F1 0.93
Macro F1 0.76

Table 5: Mahajan et. al Actor classification results

Throughout my work, I have used these results

as a grounding point of comparison to determine
how well my model is doing.

3 Competition Details & Provided Data

The competition provides datasets for training and
development that are composed of pairs of files that
contain the raw physician note text and its accom-
panying annotations. The physicians’ notes have
no pre-processing and thus span a fairly vast range
of styles and formats. Some are purely in para-
graph form whereas others use bullets, sentence
fragments, or longer stream-of-consciousness type
writing and others are even inconsistent within the
same note. The accompanying annotations, how-
ever, do follow the same general format which is
derived from the methodology described in (Di-
wakar Mahajan, 2021). As the clinical notes them-
selves differ quite substantially, some notes have
many more associated annotations than others.

In the annotations, there are tags for the med-
ications present, the disposition event status and
relevant tags for the five dimensions of clinical
context, if applicable. The medication labels give
both the name of each medication and their respec-
tive locations within their note. Each medication
listed will have an associated disposition event la-
bel which states if a change in treatment for that
medication was discussed, was not discussed, or is
unknown. Lastly, the five context dimensions for
each event span the action of the change (increase
dosage, decrease dosage, etc.), negation, which log-
ically labels if the change in medication is negated,
temporality, which says when the change occurred
or is intended to occur, the certainty of the change
happening (although they misspelled the word cer-
tainty in every instance of the clinical annotations)
and actor which describes who initiated the change.

These sets of pairs are split between the training
set and the development set, 350 pairs for train-
ing and 50 for development respectively. Later on
in the timeline of the competition, there will be
three sets of test data that will be released. Each
test set evaluates slightly different aspects of the
model. The first will evaluate named entity recogni-
tion, named entity + event, and end-to-end tasks on
unannotated notes. The second will only examine
event + context tasks on gold standard medications.
The last will evaluate only the context task on gold
standard disposition medication events. Table 6
provides a high-level summary of the text data in
the clinical notes.

2



Train Dev
Note Count 350 50
Token Count 299,193 47,345
Type Count 18,009 7,083
Tokens/Note 854.4 946.9
Sentence/Note 43.28 52.32
Med Count 350 50
Med Change Count 299,193 47,345
Med Tokens/Note 18,009 7,083
Med Changes/Note 854.4 946.9

Table 6: General training & dev data statistics

4 Data Pre-processing

4.1 Overview
One of the most crucial steps in the pipeline of
this project is the methods used to pre-process the
raw clinical note and annotation data. My meth-
ods for data pre-processing evolved over time to
improve my accuracy. This section outlines my
current methodology for data pre-processing which
has thus far given me the highest accuracy. The
primary need for pre-processing was to convert the
text data from clinical notes and annotations into a
dataset that can serve as input to my models. For
each subtask, I converted the text data and anno-
tations into json files that could be loaded into a
HuggingFace datasets object, which can be used
natively with HuggingFace’s transformer models.
For each subtask, I used the spaCy library to tok-
enize the data. Prior to being input to the model,
I also applied a BERT pre-trained tokenizer to the
input text.

4.2 Annotation Files
To extract the annotations, I first collected the “.ann”
files and converted their contents to a json format.
For each medication mentioned, I stored all of the
corresponding information relating to that instance
of the medication as key value pairs. This included
the medication id (“T” label), medication name, the
event id (“E” label), the event (“NoDisposition”,
“Disposition”, or “Undetermined”), and any of the
applicable context classifications along with their
respective value (action, actor, certainty, and/or
temporality). In order to stay consistent with (Di-
wakar Mahajan, 2021), I decided to exclude the
event context of Negation as well as the Unknown
values for each of the event context values (in fa-
vor of simply omitting the contexts that were not
present).

Previously, I had allowed my model to classify
based on the medication name which allowed for
a point of failure when the same medication was
named more than once within the same note but
with different contexts. To fix this, I added one
more element to each dictionary that would be
unique to each instance of the medication. The
annotation files provided the character span of a
medication mention (i.e. the file gives numbers
X and Y where, in the note, the instance of the
medication name begins at character X and ends
at character Y) so using spaCy, I converted this to
a token span and stored it with each medication
mention for easier classification later on as now all
classifications would be made using the token span.
I was then able to use this more structured form of
the annotations to generate the true labels for each
sub-task.

4.3 Sub-task Labeling

For NER, in order to perform token classification
to identify medication mentions, I needed to assign
labels based on whether or not any particular to-
ken was a medication name. While this approach
was straightforward, I still ran into corner case sit-
uations. One of the most notable was in the case
of multi-token medication names such as “beta
blockers.” In such cases, each token individually
would technically not be a medication but together
they would be. To ensure I handle these cases, I
followed the BIO labelling method as defined by
(Erik F. Tjong Kim Sang, 2000). In this case, I
assign labels based on if a token is the Beginning
of the medication name, Inside a medication name,
or Outside the medication. Specifically, I decided
to give a label of 0 to all non-medication tokens, a
label of 1 for the first token in a medication, and a
label of 2 for all remaining tokens in the medication
name. The idea behind this is to help the model
better learn the context in which the words became
medications by giving it differing labels depending
on the position of each token in medication names.

For the rest of the subtasks, I generated the task-
specific label sets based on the number of possible
values for each sub-task. For example, the event
classification can have three possible values, Dispo-
sition, NoDisposition, or Undetermined, so I assign
labels 0, 1, and 2 respectively. This approach thus
created different label sets for each task. I then
labeled only the medication names with the correct
corresponding label. In my implementation, I give

3



a label of -100 to any non-medication name token
so that the model will ignore the tokens irrelevant
to the task. This method was used for the event clas-
sification as well as all of the context classification
tasks.

4.4 Data Chunks
I developed two main ways to go back through the
data to break the notes down into chunks of tokens
to be fed to the model for all of the sub-tasks.

In both methods, I defined a data point to hold all
the chunks of information as a list of dictionaries
where each dictionary i in the list contains both
the tokens and the labels of the ith chunk. The
first “chunking” procedure was simply to define the
chunks of a note to be its sentences where I used
the spaCy sentence tokenizer to extract the start
and end of each sentence in the notes. The second
was slightly more complicated and it operated on a
basis of a fixed maximum number of tokens (I used
200). The reasoning behind this was due to the
fact that the sentences of the notes varied greatly
in length and because all the information about the
same instance of a medication might not always
be confined within the same sentence. Giving the
model larger chunks would first provide the model
more uniformity (which would particularly help
with small sentences), but also provide the model
with context across sentences. To accomplish this,
I first tokenized the note by sentence again and
composed chunks of full sequential, contiguous
sentences that had a collective number of tokens
under the limit. I did not split sentences across data
chunks.

4.5 Token vs. Sequence Classification
In contrast to the model reported in (Diwakar Ma-
hajan, 2021), I treated the sequence classification
tasks also as token classifications. To do this, I
assign the labels of the task to the first token in
the medication mention, and all other tokens are
given the label -100 so they are ignored. The first
benefit of this implementation is that the position
of the medication instance is taken into account
since the label is associated with the token instead
of the whole input sequence. On top of this, I no
longer need a one-to-one mapping between inputs
and outputs as I can make predictions for multiple
medications in the same input sequence without
needing to split or duplicate the sequence to avoid
certain classification pitfalls that would hurt per-
formance. This also allows me to use longer input

sequences to capture more context. The results
shown in section 7 are from using this form of
classification.

5 Models

My models were implemented by fine tuning sepa-
rate BERT-based language models for each subtask.
I formulated each of the subtasks as follows:

1) Named entity recognition to identify medi-
cation mentions: I formulated this subtask
as a token classification task. As input, the
model takes in a list of tokens (one of my data
chunks) and it performs classification on each
token predicting one of three labels: whether
it is not a medication (NoMedication), it is the
first token of a medication (MedicationStart),
or it is a token that is in a medication name
but it is not the first (MedicationContinue).

2) Medication change and context classification:
Each of the remaining subtasks was also for-
mulated as a token classification problem. As
input, the model for each subtask takes in a list
of tokens (again, one of my data chunks) and
it labels the input according to its appropriate
classification task.

I experimented with BERT-based language mod-
els pre-trained on both general-domain datasets
(BERT-base and DistilBERT) and in-domain
datasets (ClinicalBERT), all of which yielded simi-
lar results on each subtask. For each model, I used
the following configuration for training:

Training Configuration Value
Learning Rate 1× 10−5

Batch size 8
Weight decay 0.01
Dropout 0.2
Gradient accumulation steps 2
Epochs 30-50
Optimizer AdamW
Weight Decay Rate 0.01
Learning Rate Warm-Up 20%
Loss Function Cross-Entropy

6 Techniques to Boost Performance

In addition to trial and error with various configu-
rations of hyper-parameters, I made a handful of
distinguished efforts to improve my performance.

4



6.1 Weighted Loss

Throughout this project I realized that a severe
bottleneck to performance was the fact that the
distribution of medication name tokens to non-
medication tokens was vastly skewed with only
around 5% of the tokens being medications. This
problem was similarly represented to varying de-
grees in the different sub-tasks as some labels just
did not occur frequently in an already-small data
set.

To adjust for this, I weighted my loss function
based on an inverse frequency rule. I defined my
weighting scheme to be the compliment of the pro-
portion of any particular class’s frequency in the
training data. Specifically, if the proportion of a
certain class in training data was p, that class was
weighted with 1 − p in the loss function. This
helped improve the performance on the rare labels
and mitigated some of effects of the bottleneck
caused by the unbalanced distribution.

6.2 Confusion Matrices

In order to perform error analysis on my model, I
employed the use of confusion matrices. For each
sub-task, these graphs allowed me to see where
the model’s prediction most often differed from (or
agreed with) the true label for each of the possible
labels for that task. This helps visualize accuracy
and identify the common failure cases of the model.
Additionally, these matrices give the distribution of
the labels on the dev data set to help demonstrate
where bottlenecks may be occurring. With the com-
mon failure cases, I am able to potentially infer
some information about what is going on within
the model. For example, in the Temporality confu-
sion matrix, the model seems to prefer the present
class over the past class. My reasoning is that the
loss function may have weighted the present class
more than the past class, potentially due to over-
fitting on the training set. Another example is in
the Action sub-task, the model never predicted a
decrease label. A possible reason for this due to the
fact that the decrease label appeared in the data at
such a low frequency that the model never learned
its significance. Alternatively, it is possible that the
increasing and decreasing events had similar con-
texts (aside from a small number of words) and it
was just hard for the model to distinguish between
them.

Being able to perform error analysis at all in this
competition proved to be difficult in its own due to

the lack of a feasible ability to print out individual
errors and directly see which sentences and words
are the most confusing to the model. The analysis
of confusion matrices has at least partially filled
this need and helped me plan out future moves and
what to focus on in order to improve the model.

All of my current confusion matrices for each
task are included in the appendix of this paper.

6.3 Learning Scheduler
As part of my hyperparameter tuning, I experi-
mented with learning rate scheduling in order to
stabilize the learning over many epochs. The gen-
eral trend that I observed was that learning was
fairly steady overall but certain tasks had more tur-
bulence than others. The learning rate scheduler
helped the model’s learning stay more consistent
for longer by managing the learning rate during
training and decreasing it over time. Specifically,
I settled on employing a linear warm-up for the
first 20% of the training time then switching to a
constant value for the rest of training.

7 Results

This section gives the overview of the current per-
formance of my model on each sub-task. Addition-
ally, the distribution of the of training labels are
also given for each sub-task. Note that the vary-
ing in epochs was dependent on how consistent
the learning was and how long it took to train the
model.

NER Training Label Distribution

NoMedication 266885
MedicationStart 6079
MedicationContinue 1008

NER Results
Training Loss 0.069100
Validation Loss 0.076346
Accuracy 0.991858
Micro Precision 0.991858
Macro Precision 0.936845
Micro Recall 0.991858
Macro Recall 0.972242
Micro F1 0.991858
Macro F1 0.953831

Table 7: NER classification performance after 7 epochs

5



Event Training Label Distribution

NoDisposition 4509
Disposition 1118
Undetermined 455

Event Classification
Training Loss 0.577700
Validation Loss 0.430546
Accuracy 0.858291
Micro Precision 0.858291
Macro Precision 0.786135
Micro Recall 0.858291
Macro Recall 0.802307
Micro F1 0.858291
Macro F1 0.786334

Table 8: Event classification performance after 30
epochs

Action Training Label Distribution

Start 436
Stop 270
Increase 97
Decrease 31
UniqueDose 258

Action Classification
Training Loss 0.747500
Validation Loss 0.891859
Accuracy 0.734375
Micro Precision 0.734375
Macro Precision 0.563952
Micro Recall 0.734375
Macro Recall 0.613500
Micro F1 0.734375
Macro F1 0.583096

Table 9: Action classification performance after 50
epochs

Actor Training Label Distribution

Physician 1017
Patient 84

Actor Classification
Training Loss 0.255300
Validation Loss 1.547757
Accuracy 0.900000
Micro Precision 0.900000
Macro Precision 0.661234
Micro Recall 0.900000
Macro Recall 0.633261
Micro F1 0.900000
Macro F1 0.645348

Table 10: Actor classification performance after 35
epochs

Certainty Training Label Distribution

Certain 932
Hypothetical 103
Conditional 81

Certainty Classification

Training Loss 0.251100
Validation Loss 1.213831
Accuracy 0.888889
Micro Precision 0.888889
Macro Precision 0.748475
Micro Recall 0.888889
Macro Recall 0.701092
Micro F1 0.888889
Macro F1 0.715140

Table 11: Certainty classification performance after 50
epochs

Temporality Training Label Distribution

Past 570
Present 417
Future 107

Temporality Classification

Training Loss 0.220100
Validation Loss 1.109499
Accuracy 0.779487
Micro Precision 0.779487
Macro Precision 0.655910
Micro Recall 0.779487
Macro Recall 0.637939
Micro F1 0.779487
Macro F1 0.623974

Table 12: Temporality classification performance after
50 epochs

6



7.1 Results Discussion
I can see from my results that the distribution of
labels varies greatly depending on the sub-task.
Many of the contexts appear with very low fre-
quency and thus it makes sense where the model
has difficulty. Again, comparing to (Diwakar Ma-
hajan, 2021), I can see that my results are beginning
to creep up on their accuracy. The following sec-
tion details the methods I am going to pursue to
hopefully surpass their performance.

8 Future Work

8.1 Data Augmentation
One of the biggest problems in this competition
is that I simply do not have access to much data
to train my model on. In computer vision, it is
common and extremely beneficial to perform data
augmentation on the training data to essentially ar-
tificially inject more training data without biasing
the model. For vision, this usually takes the form
of applying filters to images (such as grayscale),
flipping images on one or more axis, cropping, or
any combination of these as none of these alter-
ations actually change what is in the image. With
my remaining time, I want to explore analogous
techniques in natural language processing to apply
to the clinical note data. However for NLP, the task
is non-trivial as naive approaches such as adding in
random words or cropping sentences randomly can
completely change the meaning of the sentence an
thus affect the model. Future work could aim to
figure out how to potentially artificially boost my
quantity of training data.

8.2 Chunk Positioning
In my current method of breaking down the raw
clinical notes into chunks to feed to the model, I
simply go by sequential sentences until I hit my
defined maximum. I also experimented with split-
ting my data on the medication mentions to only
have one medication mentioned per sequence of
tokens passed to the model for event and context
classification. I believe that having a more sophisti-
cated splitting method could perhaps improve per-
formance. As such, I want to see if I can position
my chunks to provide more context per medication
instance. For example, I want to document what
the effect of centering a chunk around a medication
would be. My hypothesis is that the context of any
instance of one medication might not always be
limited to strictly before or after the medication

but instead could happen in both. By centering the
chunk on the medication name, the model might
be able to have more relevant sentence context to
hopefully improve performance.

8.3 Ensembling

I am currently using a single model to get my pre-
dictions, but I think it would be interesting to in-
vestigate how the use of an ensemble of the three
BERT models might improve my accuracy. This
technique would have me train all three versions
of BERT and use some method of combining their
collective results. Out of the options of “bagging,”
“stacking,” and “boosting,” I think that boosting
would be the best for my case. This would involve
adding the models’ behavior in such a way that
the predictions are weighted together to potentially
give a overall better result than any single model
could have.

8.4 Multi-label Classification

Another technique that I am actively looking into is
formulating the context sub-tasks to all be trained
with multi-label classification. In this, I would
have the same model trained on the all of the sub-
tasks and thus predict all of the sub-tasks’ labels.
My intuition is that this would allow the model to
learn more about the data through the various con-
texts. This is a technique used in (Diwakar Maha-
jan, 2021) so it may help me bridge the remaining
gap between my performance and theirs.

8.5 Further Hyperparameter Tuning

Throughout this entire project I have experimented
with the hyper-parameters to run this model on. In
particular, I have noticed that certain tasks’ train-
ing are steady even for a high number of epochs.
Because of this, one future experiment could be
training one (or all) tasks on an extremely high
number (≈ 100) of epochs to see how it impacts
my results. However, in doing so I am aware that
this could increase the risk of overfitting.

Additionally, I want to experiment with how both
the dropout rate and the learning rate/cosine sched-
uler can be optimized. In both of these, I have
observed substantial shifts in the behavior and ac-
curacy of the model based on small differences in
parameter value so I want to see if I can zero in
on optimal values. Lastly, I wanted to investigate
the benefit of applying a hyper-parameter search
algorithm.

7



9 Conclusion & Discussion

So far, I have been able to achieve a substantial
increases in my accuracy over my initial baseline
results. In some instances, I was able to see im-
provements of upwards of 10−30%. I suspect that
much of this performance gain was a consequence
of my overhauled data pre-processing, the learn-
ing rate scheduling, and tuning of the dropout rate.
However, I am just below the accuracies reported
in (Diwakar Mahajan, 2021). Almost all of the
details surrounding the model they used were kept
private, but they implied that it was rather simple
and did not account for many corner cases. It is un-
clear to me how they achieved such high accuracy
but some possible options include them training
their model for a much higher number of epochs
as well as the difference between the training data
and the test data. Their reported accuracies are on
the unreleased test data which has twice as many
notes as the dev set, which is what my accuracies
are reported on. It is pure speculation but, given
that the dev set is half the size, it could be possible
that certain cases that are confusing to the model
are over-represented.

References
Xudong Jia Chaojie Wen, Tao Chen and Jiang Zhu. 2021.

Medical named entity recognition from un-labelled
medical records based on pre-trained language mod-
els and domain dictionary. Data Intelligence, 3:402–
417.

Jennifer J. Liang Diwakar Mahajan. 2021. Toward un-
derstanding clinical context of medication change
events in clinical narratives. Private Preprint.

Sabine Buchholz Erik F. Tjong Kim Sang. 2000. Pro-
ceedings of CoNLL-2000 and LLL-2000, pages 127–
132.

Edson Florez, Frederic Precioso, Michel Riveill, and
Romaric Pighetti. 2018. Named entity recognition
using neural networks for clinical notes. PMLR.

A Appendix

Confusion Matrices
Named Entity Recognition

Event

Action

8

https://aclanthology.org/W00-0726.pdf
https://aclanthology.org/W00-0726.pdf
https://proceedings.mlr.press/v90/florez18a.html
https://proceedings.mlr.press/v90/florez18a.html


Certainty

Actor

Temporality

9


